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Abstract.  The propagation of nonlinear dispersive gravity waves in an inviscid irrotational fluid can be described 
by a Hamiltonian system. The canonical equations contain a boundary integral which is computationally expensive. 
However, for fairly low and fairly long waves an approximation can be made that gives rise to the solution of 
computationally mort attractive Helmholtz-type equations. In an earlier attempt by Broer et al. [4, 6] canonical 
equations were derived that are stable for all wavenumbers. However, two Helmholtz-type equations need to be 
solved per right-hand side evaluation. In this paper, canonical equations are presented with the same qualities, but 
now only once per right-hand side evaluation a Helmholz-type equation needs to be solved, which is optimal. 

1. Introduction 

We consider irrotational nonlinear dispersive gravity waves in an inviscid incompressible 
fluid. The Boussinesq equations, we are aiming at, describe the propagation of fairly low and 
fairly long waves and take into account the effect of amplitude and frequency dispersion. 
Such waves occur in harbors and coastal regions. For long waves the frequency dispersion is 
small and such waves are usually modeled by the shallow-water equations. If the waves are 
low, the amplitude dispersion is small and they can be described by a linear set of equations. 
In order to indicate how low or how long a wave is, we introduce the parameters e and #, 
defined by e = a/ho and # = (ho/L) 2. Here, a, ho and L are characteristic values of the 
wave amplitude, depth and wavelength, respectively. 

In the process of deriving Boussinesq equations, the flow quantities are expanded in power 
series of e and # and we seek a first-order (the error is O(e 2, e/z, #2)) approximation of the 
nonlinear wave equations. Hence, these parameters should be small in order to justify the 
neglect of  the higher-order terms. These equations are not unique and we try to find a set with 
favourable stability properties. 

Due to round-off errors, the numerical solution of a partial differential equation gives 
rise to short waves, which should not disturb the solution significantly or lead to an unstable 
computation. A necessity for the construction of a stable numerical model is a stable continuous 
model. Hence, also the continuous Boussinesq equations should be stable for short waves far 
away from the regime for which they have been derived. 

Positive-definite Hamiltonians give canonical equations which are stable for all waves. 
For this reason we start from the general Hamiltonian formulation of water waves, which has 
this property (see Section 2). The Hamiltonian represents the total energy of the fluid and its 
canonical variables are ( and ¢(x, y, t) = ~(x ,  y, ( (x ,  y, t)). Here ( and if2 denote the water- 
elevation and the velocity potential, respectively. To obtain stable Boussinesq equations, the 
Hamiltonian is approximated by a simpler form, which is only valid for small # and e but is 
still positive definite. This approach has already been used by Broer et al. [4, 6]. 
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Mooiman has derived and implemented a set of  Boussinesq equations based on such a 
Hamiltonian [7, 8]. The solution of the Helmholtz-type equations dominates the run time of 
the model. Van der Ploeg [9] compared a variety of numerical solution techniques for these 
equations, which resulted in a speed-up of an order of magnitude. However, this part is still 
dominating the run time. In fact, in Mooiman's model in each right-hand side evaluation two 
times a Helmholtz-type equation has to be solved in which the operator is non-symmetric. In 
Section 3, we derive an alternative positive-definite first-order approximation to the Hamilto- 
nian. The corresponding canonical equations are presented in Section 4. In the implementation 
of this alternative only one Helmholtz-type equation needs to be solved per right-hand side 
evaluation and the corresponding matrix is symmetric. The latter is an additional advantage, 
because it simplifies the solution process. These favourable properties are due to a better 
choice of the approximate Hamiltonian. 

2. The Hamiltonian for nonlinear gravity waves 

In this section, we will present a short derivation of the equations and show that they have a 
Hamiltonian structure. 

2.1. THE EQUATIONS 

We consider nonlinear dispersive gravity waves in an incompressible and inviscid fluid. The 
propagation of these waves is described by the continuity equation 

u~ + v u + wz = 0 

and the Euler equations 

1 
ut + uux  + VUy + WUz + - p x  = 0 

P 
1 

vt + uvx + VVy + WVz + opy = 0 

1 
wt + uwx  + VWy + WWz + - p z  = - g  

P 

In these equations, u and v are the horizontal velocities in x- and y-direction, respectively, w 
is the vertical velocity (in z-direction), p is the pressure, p is the density of the homogeneous 
incompressible fluid, and g is the gravitational acceleration. 

We assume that the pressure outside the fluid is constant and equals p0. In the Euler 
equations only the pressure gradient is involved. Hence, we can take p =/90 = 0 at the free 
surface which is the so-called dynamic boundary condition. Furthermore, it is assumed that 
a particle on the free surface remains there. This yields the kinematic boundary condition at 
the free surface 

¢, + uCx + vCy - w = 0, z = ¢ ( x ,  y ,  t)  

Finally the bottom is impermeable. Hence, we must require that the normal velocity at the 
bottom vanishes 

uhx  + v h y  + w = O ,  z = - h ( x , y )  
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In these equations, z = 0, z = - h ( x ,  y) and z = ~(x, y, t) give the position of the still 
water-level, the bottom and the free surface, respectively. We suppose that u 2 + v 2 + w 2 --+ 0 
as x 2 + y2 __+ oo. Hence, there is no main flow. 

Furthermore we assume that the flow is irrotational. In this case the velocity can be written 
as the gradient of a scalar function. This function is called the velocity potential and is denoted 
by ~. Hence, we have 

u = ( I ) x ,  V =ff2y, W = ~z.  

The boundary-value problem posed above can be reformulated in terms of ~b as follows 

A ~  + ~zz = O, - h ( x , y )  < z < ~ ( z , y , t )  (1) 

1 (iv 12 + + = o, z = ¢ (x ,  y, t) (2) ~t+~ 
~t + W(I). V ¢  - (I)z = 0, z = ~ (x ,  y, t) (3) 

V ~  . V h  + ~z = O, z = - h ( x , y )  (4) 

where V and A denote the 2-dimensional gradient and Laplace operator, respectively. This 
notation will be used throughout the paper. Because there is now main flow, we require that 
V~b vanishes as x 2 + y2 __+ c~. Only gradients of ~I, are involved in the equations so, in order 
to make it unique, we also require that ~I, vanishes as z 2 + y2 __+ c~. For future use, we also 
give here the linear dispersion relation, which is obtained from a Fourier transform of the 
linearized equations with horizontal bottom (see also [10]). It is given by 

c 2 g tanh(hok) (5) 

Equation (5) shows how the phase velocity c depends on the depth ho and the wave number 
k of  a plane wave with velocity potential 

cosh[k(z + ho)] exp[i(klX + k2y - kct)] 

where k = V/-~12 + k2. 

2.2. HAMILTONIANS, CANONICAL VARIABLES AND EQUATIONS 

Many of the systems of continuum mechanics can be formulated (see [1]) in a special form 

Opi 
O---t - Hq, (P, Q, t) (6) 

Oqi 
at  = Hp, (P, Q, t) (7) 

where H is the so-called Hamiltonian density. These equations can be deduced from the 
variational equation 

/ dQ 
5 (pT  H) dt df~ = 0 

n dt 

where f~ is the spatial domain on which the equations are defined. Here P = (Pl, .., pn) and 
Q = (ql, .., qn) are scalar fields and fully determine the state of the system. It is customary 
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to call P and Q the canonical variables. Integrating H over f~ yields the Hamiltonian 74. 
In general for conservative systems the Hamiltonian 74 is equal to the total energy of the 
system. The equations (6) and (7) are the so-called canonical equations corresponding to the 
Hamiltonian 74. 

The canonical equations corresponding to a time-independent and positive-definite Hamil- 
tonian are such that the zero state (P  = Q _= 0) is stable in the sense of Lyapunov [6]. We will 
briefly explain what this means. Suppose there exist positive constants cl and c2 such that for 
all perturbations/5 and Q holds 

cl(dl(/5) + d2((~)) _< 74(15, (~) _< c2(d1(/5) + d2((~)) (8) 

where di is some norm, then we call the Hamiltonian positive definite (if Cl = 0, then we call 
it positive). Due to the fact that 74 is independent of time we have for any tl > to that 

cl(dl(/5) + d2(Q))t=t, ~_ 74(/5, Q,)t=t, -- 74(/5, (~)t=t0 _< c2(d1(/5) q- d2(Q))t=to 

Hence, the growth of the perturbations is bounded and thereby the zero state is stable. 

2.3. FORMULATING THE HAMILTONIAN SYSTEM 

The functions ¢(x, y, t) = ~(x,  y, ((x,  y, t)) and ((x,  y, t) fully determine the motion. Given 
( and ¢, then ~ can be computed by solving for fixed time the boundary value problem 
given by Equation (1) with boundary conditions (4) and iI~(x, y, () = ¢(x, y). Once • is 
known, the time evolution of ¢ and ( is found from (2) and (3). In fact the equations (1)-(4) 
can be written explicitly in a boundary integral formulation in terms of ¢ and (, but this 
leads to a computationally expensive numerical model. In the following we will show that 
the boundary-value problem (1)-(4) can be reformulated as a Hamiltonian system with a 
Hamiltonian 7 /be ing  the total energy Ek + Ep and canonical variables ¢ and (. For more 
theoretical background see [2, 3]. The kinetic and potential energy are given by 

l/;/;L 
Ek = ~p oo o0 (IV(I)12 + ~2)dzdydx 

and 

1 
Ep = 2p 9( 2 dy dx 

o o  o o  

respectively. In view of our previous observation 74 is a function of ¢ and (. Hence, we have 
to show that the boundary value problem is equivalent to the Hamiltonian system 

0¢ 
POt = -He  (9) 

o( 
p~-~- = He (10) 

Here H(  and He are implicitly defined in terms of Gateaux derivatives by 

(Hr, v) = 574((¢, ();  (v, 0)) 

(S~,v) = 574((¢,¢) ; (0 ,v))  
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where v is an arbitrary function and the inner product is given by 

/ ' / 5  (v, w) = vw dx dy (11) 
oo  

Now 

67/((¢, (); (v, 0)) -- lim 7/(¢ + ev, ¢) - 7/(¢, ¢) 
¢--+0 £ 

Hence 

(He, v) = ,--.01im ~p j _ ~  j _ ~  [ I v ( ~  + ey)l  2 

+ (~ + ,v)~ - I v ¢ , l  2 - ~ d z ] d x d y  

where • and ,I, + eV are solutions of (1) with boundary condition (4) at the bottom and at the 
free surface • = ¢ and/b + eV = ¢ + ev, respectively. So we get 

(He, v) = p Vii). V V +  '~zVz) d z d x d y  
oo  oo 

After applying Green's theorem and (1), it follows that 

(H~, . )  = p [(~nV h dS  
o o  o o  

where dS is a surface element. Using the impermeability of the bottom (4), we obtain 

(H¢, v) [ff[ ] = p ~bnV z=¢ dS 

l_ j5 ,/ = p ~ ~v[en]z=c ( 1 + ¢ I + ¢ ~ )  dxdy 

This gives 

s ~  = p[¢.]~=~¢(1 + ¢~ + ¢~) 
The outward normal n on the surface is 

n = ( - ¢ x , - ¢ y ,  1) ~ / ¢ ( 1  + ¢~ + ¢~) 
and this finally yields 

He  = -p(Vff2. V¢ - ¢I'z)z=¢ (12) 

Indeed we see that the canonical equation (10), with right-hand side (12), is equivalent to 
Equation (3). 

Now, we will vary ¢ keeping ¢ fixed. From ¢(x, y, t) = ~(x,  y, ¢(x, y, t), t) it follows that 
a variation ev in ¢ induces a variation - e ~ z v  in • at the surface. Hence, 

57/((¢, ¢); (0, v)) _= lim 7/(¢' ¢ + ev) - 7/(¢, ¢) 
c---*O E 

= lim l p  [¢+~v IV( ¢I' + eV)l 2 
e"-~'O o o  o 0  E d - h  

+ (~ + ,v)~ - I V ~ l  2 - ~ de + g(2C,v + (,v)2)]dxdy 
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where here eV is due to the variation -e(~zv at the surface. This equation is equal to 

1 
(He, v) = lim ,,p ,¢+~V(IV,I)[2 + (I)2) dz f 

c~0 Z ~ oo E J(  

+a(2¢,~ + (,~)2)] d~ du 

+~p Iv(¢ + eV)l 2 
OO o o  

+(~ + ~V)2z - I v , I  2 - ~ dz] dx dy 

The first part is simple and the second part can be treated as before with Green's theorem. 
This yields 

l f _ > ° f _  ~ (H(,v) = ~p [(IVe212 +,~z~)~=¢ + 2g(]v dxdy 

S# i5 J::< +p [¢I,n V h dS 
o O  OO 

and therefore 

The last part is precisely the difference between et and ~t, i.e. 

(, ,  + < ¢ , ) = , :  + + + 

Hence, the canonical equation (9) with H(  given by (13) is equivalent to Equation (2). 

3. Approximating the Hamiltonian 

In order to be able to evaluate the quality of an approximation of the Hamiltonian, we write the 
problem in dimensionless form. We assume that all quantities can be written as power series 
expansions in e and #, where e and # are defined by e = a/ho and # = (bolL) 2. Here ho, 
a and L are characteristic values of the depth, wave amplitude and wavelength, respectively. 
The parameters e and # measure how low and how long a wave is. For fairly low and fairly 
long waves e and # are small with respect to one. We will derive a Hamiltonian which is equal 
to the exact Hamiltonian up to O (e 2, ep, #2). Thus, we will obtain a first-order approximation. 

3.1. THE DIMENSIONLESS PROBLEM 

First, we will introduce the characteristic values of the involved variables. Thereafter, the 
equations in the new variables will be presented. Horizontal distances are compared to the 
characteristic wavelength L. Hence, the characteristic wave number k0 can be chosen as 1/L. 
As the characteristic wave speed for these shallow-water waves is co = x/gho, we find a 
characteristic time scale T = L/c0. Moreover, the characteristic depth and wave amplitude 
are ho and eh0, respectively. Herewith, we introduced the following dimensionless quantities: 

= x/L, 9 = Y /L ,  {= (L/co)t, 

e l k ,  h=h/ho,  ~=~/eho 
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The characteristic value of ,I~ follows from the linearized version of (2) and is given by ecoL. 
Now, from the linearized version of (3), it follows that the characteristic value of z is L2/ho . 
Hence, we have found the important dimensionless quantities 

ho ~ _  (I) 
= --~z, ¢coL 

With these values all the remaining quantities can be put in dimensionless form 

i ~  =_ 1 ~ £ , _  1_ CI ) ~ = 
~-g q'x' ~o, , '7 ~' 

Omitting all bars, the boundary-value problem (1-4) can be rewritten in dimensionless vari- 
ables as follows: 

• , + ~-~(IWl 2 + #~:~) + ¢ 
n 

Ct + e V ~ .  V ¢  - 'I'z 

Vii) • Vh  + ~z 

= 0, -uh(x,  u) < z < ~u¢(x, v, t) 

= 0, z = s#ff(x, y, t) 

= 0, z = epff(x, y, t) 

= O, z = - # h ( x , y )  

(14) 

(15) 

The Hamiltonian written in these dimensionless variables is 

n = 5lf~oo f~ooo(~l [ ' " ¢  IV~12d-,uh + # ~ 2 d z ) + ~ 2 d x d y  (16) 

The dimensionless form of the dispersion relation (5) reads 

c 2 =  tanh(v/-fik) (17) 
,/-Zk 

This equation demonstrates for instance that for long waves on a shallow sea, hence for small 
v/-fi, we have the typical shallow-water phase velocity c -- l, or x/gho in dimensional form. 

3.2. REQUIREMENTS IMPOSED ON THE APPROXIMATION 

The approximation ~app to the Hamiltonian should describe the propagation of fairly low and 
fairly long waves well enough. To this end we require that ~app is a first-order approximation 
to the Hamiltonian 7-/given by (16). Hence we demand that the difference 7"lapp - 7-[ consists 
of higher-order terms in e and/~. To get useful results we assume that e and # have the same 
order of magnitude. Hence, 7¢app should satisfy 

"~app -- ~ ~-- O (  ~2, ~#, U 2) 

In the process of numerically solving the canonical equations corresponding to 7-lapp, very 
short waves are created, due to truncation errors. These very short waves lie outside the 
Boussinesq regime and may not be correctly modeled by 7-/app which can lead to instabilities. 
In order to evade this problem, we require that ~app gives a stable canonical system. Hence, 
we require, similar to the discussion in Section 2.2, that ~avp is a positive definite function 
of V ¢  and ~. Note that the value of ¢ itself is not important in the canonical equations. We 
summarize the requirements imposed on 7-[avp: 

1. ~app is a positive-definite function of V ¢  and ~. 
2. 7-lapp - 7-/= O(e 2, e#,  #2) 
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3.3. THE APPROXIMATION 

Now we construct an approximation "]~app to 7-/= Ek + Ep which satisfies the requirements 
presented in the previous section. The potential energy Ep is already in a suitable form. 
Hence, only Ek remains to be approximated. To facilitate the approximation process, the 
kinetic energy Ek is split in two parts 

Ek = Ek,o + Ek,s 

where 

Ek ,0 1 / ~  / _ ~  / o  ([V~[ 2 +#O2z)dzdxdy (18) 
~ oo c~ #h 

1 / ' ~ / ~  f et'¢ E~,s = 2~ ~ ~ J 0  (Iv¢12 + ' ~ ) d z d x d y  

In fact these are the kinetic energy below and above the still-water level, respectively. We will 
show that an O(ett, #2) approximation of the exact Hamiltonian (16) in dimensionless form 
is given by 

'/2 Z "]'~app ~- "~P (V(~RV¢ q- (2) dx dy (19) 
oo o~ 

where 

R = + < ) - '  + + + <) (20) 
$ 

fl = a + 1 (21) 

in which the self-adjoint operator A is defined by 

1 (hAl + A ( h f ) )  + lh- l lVhl2f  (22) Ay = - ~  

with f a sufficient smooth function on which A operates. Recall that an operator is self-adjoint 
if (u, Av) = (Au, v), where (., .) signifies the inner product defined in Equation (11). The 
value of the coefficient a should be nonnegative. A special choice of this coefficient will be 
treated at the end of this section. 

As a first step, we will show that the intermediate approximation of the Hamiltonian 

7-/0 = ~ oo c~ (VCRoV¢ + ef lV¢l  2 + (2) dx dy 

with 

(23) 

is an O(e#,  #2) approximation of the exact Hamiltonian. This is proved in the following 
lemma in which the first part corresponds to the second term in (23); the second and third part 
to the first term. 
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LEMMA 1. The following approximations hold 

1. Ek,. - ½ f°_~oof°_'~ eflV¢12 d x d y  = O(e#) 
c~ V 2. Ek,o-- ½ f°_~f°_~(VORo ¢)~=odxdy  = 0 ( #  2) 

3. ½ VCRoV d dy- ½  Y (WnoW) =odxdy = 

Proof: 
i. We will express both terms in the left-hand side in ~I, at the surface. Subtraction leads 
immediately to the desired result. 
On the interval [0, e#(],  we have for [V¢I,I 2 + #~2 the Taylor series expansion 

¢2 

Herewith, Ek,s can be written as 

1 ef(IV~I 2 + #~2).=e~¢ dx dy + O(e2#) (24) E~,. = ~ ~ 

Because ¢(x,  y, t) = ~(x,  y, ep((x,  y, t) ) we see that 

V ¢  = ( V ~  + e p V (  ~z)z=~u¢ (25) 

Hence, 

,j?/? 1/;/? 
- 6¢1v¢12 dx dy = ~ dx dy -t- O(e2p,) 
2 O0 O0 O0 O0 

Subtracting this expression from (24) yields 

Ek,. - ~ oo eClvcl  2 dx dy = ~eU dx dy + O(e2U) 
o O  OO 

which proves Assertion 1. 

2. By Green's theorem, we will transform the volume integral Ek,0 given by (18) into a 
boundary integral. In the result, we need an approximation of ~ at the still-water level. This 
will be found using the impermeability condition at the bottom. In the truncation of the Taylor 
series used here, an approximation of cI,~ follows in terms of tangential differential and integral 
operators acting on • at the still-water level. After a simplifying step, the result follows upon 
substitution in the boundary integral. 

Hence, we can write Ek,o by using Green's theorem as follows 

Ek,o = ~P [¢I'¢z].=0 + [¢~n].=-.h dx dy 
O o  o O  

From ¢n  = 0 at z = -#h (x ,  y) it follows that 

Ek,0 = ~0 ~ ~ ( ~ ) ~ = ° d x d y  (26) 

Now, we have to remove the z-derivative of • in this expression. This can be accomplished by 
using the impermeability condition at the bottom (15). As a first step, we express the required 
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quantities V ~  and ffz at the bottom in terms of derivatives of • along the still-water level 
and in ~= (x, y, 0). Therefore, we form Taylor expansions and make use of the dimensionless 
Laplace equation (14) to get rid of as many z-derivatives as possible. In formulas this procedure 
reads 

gff2(x,y,-I.th) ~, V~2(x,y,O) -#h(V¢)z(X,y,O)--}- l (#h)2(g~)zz(X,y,O) 

= (1 - l ( / . th )2A)V¢(x ,  y, 0) - #hV~z(X, y, 0) (27) 

and 

• z ( ~ , y , - , h )  • z ( X , y , o )  - ~ ,h~z z (X , y ,o )  

= (1 - l # h 2 A ) ~ z  + h(1 - l#h2A)A~(x,y,O) (28) 

In Appendix A, we consider an infinite expansion which may be of interest for higher-order 
approximations. As a second step, equations (27) and (28) are substituted in (15), which yields 
after some algebraic manipulations (see also Appendix A) 

1 2 1 
(1 - a-div(#h V) )¢z (x ,  y, 0) = - d i v ( h V 0  - 7#h3V(A0) )z=0  + 0 ( #  2 ) 

o 

We define an approximation C of Oz by 

( 1 -  l d i v ( p h 2 V ) ) C  = - d i v ( h V O -  6Ph3V(AO))z=O (29) 

Since ¢I, --+ 0 as x 2 + y2 __+ oo, it follows that 

Ek,o = - ~P O(x, y, 0) A B  dx dy + 0 ( #  2) 
OO 

= ~p r e ( . ,  y, 0)vB d~ dy + O( .  2) 

which is upon substitution of (30) equal to Assertion 2. 

(30) 

Hence, 

c - • z(*, y, 0) = o ( ~  2) 

and an O(#2)-approximation to Ek,o reads 

Ek,o = ~P (~2)z=oC dx dy + O(# 2) 
O 0  O 0  

It is advantageous to write C as a Laplacian, say C = - A B .  Substituting this expression in 
(29) we find that 
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3. Employing a Taylor series expansion we find 

V,I)(x, y, 0) ~ V,I~(x, y, ep( )  - e p f V ~ z  (x, y, e#()  (31) 

Because R is self-adjoint the difference in the proposition can be written as 

l f~ f~ V(~z_-o+¢)noV(~z=o ¢)dxdy 
2 ~ oo 

Using (25) and (31) this equals 

I J? 1 ~ V(~z=0 + ¢ ) R 0 ( V f ~ z  + ¢V~z)z=,~¢ dx dy 
~bt co co 

which yields Assertion 3. [] 

During our research, we first derived 7"lapp with a = 0 which is more or less a straight-forward 
approximation of 7-/0. The precise steps in this approximation are described in the proof of 
the following theorem. The Hamiltonian is, as far as we can see, only positive in this case. At 
the end of the section we will comment further on this subject. 

THEOREM 1. For a = O, 7£app - 7"l = O(e#,  ~2) and "]-Lapp is positive. 

Proof: 
From (23), it follows that Ek can be approximated by 

1 
Ek ~ aP V¢[Ro + e ¢ ] V C d x d y  

It is not clear whether this approximation of the kinetic energy is positive, but we can deduce 
an approximation from it which is. First we use that 

Ro = t(1 - 1.h2 )- h(1 - 1 . h 2 a ) l  

= E(1 - 1,h  )-lh(1 + + O ( . b  

The first term in the right-hand side is equal to 

[ (1  + l # h 2 A ) h - l ( 1 - 1 1 . t h 2 A ) ] - I  

By neglecting another 0 ( #  2) term and after carrying out the differentiations involving h the 
last expression becomes 

[h -1 - 6 # ( h A  + A(h.))  + l t t h - l l V h l 2 ] - I  -= [h -1 + #A] -1 

where A is the self-adjoint positive operator given by 

A---- - l ( h A  + A ( h . ) ) +  l h - l l V h l 2  

Furthermore, we use the approximation 

e(  + [h -1 + #A] -1 = [(h + ~¢)-1 .~_ #A]- I  + O(e#, #2) 
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Hence, 

R0 + e (  = [(h + e() -1 + #A] -1 + O(ep, #2) 

which proves the theorem. [] 

In order to find a positive-definite approximation we introduce an extra degree of freedom. 

THEOREM 2. For a > O, ~app - 7-[ = O(s#,  #2) and ~'~app is positive definite. 

Proof: 
In this proof we will use h to denote h + e(. Now we write 

[ (h- '  + #A] -1 = v/h[I + # v / ~ a v / h l - l x / ~  

where the inverted operator in the fight-hand side is also symmetric. We approximate the 
right-hand side by 

R =  V/-~[(I + a p B ) - ' ( I  + f l # B ) ] - l v / h  

with fl = a + 1 and B = v/-hAv/h. This approximation satisfies 

R -  [h -1 + #A] -1 = 0 ( #  2) (32) 

Alternatively R may be written as 

.R -~- v/h(1 + f l p B ) - l ( I  --I- otpB)Vt~ 

= V/~(I + / ~ # B ) - I ( ~ / - 1  t- ~(Z +/~#B)v/-~ 

= v/h(I + fl#B)-I V/h + ~h 

= ~ ( h - l + f l # a ) - l +  ~ h  

which equals (20). It is easy to see that R is a self-adjoint and positive-definite operator for 
a > 0 .  

The extra degree of freedom is used to approximate a next term of the linear dispersion relation 
for a horizontal bottom (cf. [6]). The linear dispersion relation (17) should be compared to 
the linear dispersion relation of our model at dimensionless depth h = 1 

~2 =/~ 

where the Fourier symbol of R is given by 

a 1 + lot#k2 ~ =  1 + _ 

3(1+13vk2) 3 1+  #k2 

In both cases we observe that for small v/'fik the phase velocity of the shallow water equations 
is obtained, c = 1 in dimensionless coordinates, which is independent of k. Due to the fact 
that a first-order approximation is derived, also the second term in the Taylor expansions of 
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the respective phase velocities are equal for any a (recall that 3 = 1 + ~). The remaining 
freedom is used to match a next term of the expansions. Hence, we require that 

C2 _ ~2 -_ O ( ( V / - ~ ] ¢ ) 6 )  

which follows after an elementary calculation for a = 1/5. 

Now we will address the stability question. Consider the metric 

d (V¢,  ()  = (V¢,  (h + ~OV¢)  + I1(112 

where ( . ,  .) and I I " I I denote the usual L2 innerproduct and norm as in Equation (11), respec- 
tively. A straightforward calculation shows that (cf. Equation (8)) 

o~ 
a(v¢,  ¢) < 7-topp(v¢, ¢) _ a(v¢,  

Hence, reasoning similarly as in Section 2.2, the zero state V ¢  ~ ( ~ 0 is stable for all ~ > 0. 
It may still be the case that by a sophisticated reasoning also ~ = 0 leads to a stable model. 
The above considerations yield only a sufficient condition for stability. On the other hand, 
also the exact Hamiltonian is only positive, which can be seen from the exact linear dispersion 
relation which yields a zero phase velocity for a wave number tending to infinity. 

4. The canonical equations corresponding to  ~-[app 

Having made an approximation, we can return to the original dimensions and derive the 
canonical equations. There the Hamiltonian 7-/app is given by 

with 3 = ~ + 1. According to Section 2.3, we must calculate (Happ)¢ and (//app)¢. The first 
is implicitly given by 

( ( H a p p ) O  v )  lim 7-Gpp(¢, ( + ev) - 7-Gpp(¢, () 
e.--+O E i/:: 
~p V ¢  lim ([(]~ + ev) -1 + 3A] -1 - []Z -1 + 3 A ] - I ) v ¢  

(:~ ~ ~"~0 

+ v ~ l V ¢ l  2 + g(v  dx dy 

where we have used h to denote h + (. Now, we deduce that 

[(h + ev) -1 + flA] -1 - []z -1 + flA] -1 
= [/z -1 + f lA]- l (h  -1 _ (~ + ev)-l)[(]~ + ev) -1 + flA] -1 

v 
= e[]~-I + 3A]-I  ]~(]z + ev) [(h + ~v)-I "Jr 3A] -1 

= eR:~[h-2vR~] + O(e 2) 

with R3 given by 

R/~ = [(h + ( ) - i  + 3A]-1 (33) 
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Using this result we see that 

((napp)C,v) = l p  ~ [ I(h+¢)_IRzV¢Ie+ iV¢12+2gC]vdxdy 

where the symmetry of R# is used and hence (Happ)( is given by 

(Happ)¢= lp  [~ , (h  + ( ) - I R # v ¢ I 2  q - ~1V¢12 q - 2g(] 

The derivation of (H~pp)6 proceeds as follows: 

((Happ)¢, v) = lim 7"lapp(¢ + ev, ~) - 7-l~pp(¢, ~) 
c--~O 6 

# #  = p Vv R V ¢  dx dy 

where 

1 
R = ~ ( R #  + o~(h + ~)) (34) 

Applying Green's theorem we obtain 

j_°j_° ( ( Happ)¢, v) ~- - p  v d i v ( R V ¢ )  dx dy 

Hence, the canonical equations are according to (9) and (10) given by 

¢ t  = - I (h  + ¢ ) - I R z V ¢ [ 2  -  lV¢l - g ~  

(t = - d i v ( R V ¢ )  

These are the desired equations and they are used as a starting-point for a numerical model. 
Note that for the evaluation of the right-hand side, we need to compute R V ¢  and R#V¢ .  
From (34) it follows that R V ¢  is composed of R#V¢//3 plus a simple explicit operation. The 
computation of f = R#V~b is in fact the solution of the problem (h + ~)-1 + ~A)f  = r e ,  
which is of Helmholtz type. Hence, only one Helmholz-type equation needs to be solved for 
the right-hand side evaluation. 

At this place, it is in order to compare our approximate Hamiltonian to the one proposed 
by Mooiman based on the work of Broer. That Hamiltonian reads 

'/5/5 7"/app = ~p (h + ( ) (GV¢)  2 + gf2dxdy 
oo oo 

where G is a rational expression like R but now independent of ~. Of course, G* (h + ~)G = 
R + O(e#,  #2), where G* is the adjoint of G. The derivation of the equations is as described 
in this section. However, instead of R we will find G*(h + ()G in the continuity equation. 
The application of this operator requires twice the solution of a Helmholz-type equation. This 
factor two is actually found by comparing the run time of the two models on a vector computer 
(NEC SX-3) using comparable numerical techniques. Furthermore, some experiments carried 
out by experts in the field indicate that our model is at least as accurate as that of Mooiman 
[5]. 
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5. Concluding remarks 

The propagation of nonlinear dispersive gravity waves is described by a Hamiltonian system 
in which the elevation and the velocity potential at the free surface are the canonical variables. 
However, the corresponding canonical equations contain a boundary integral operator, which 
makes the numerical solution process expensive. For fairly low and fairly long waves a class 
of of first-order approximations to this Hamiltonian can be found, for which the canonical 
equations contain a numerically attractive approximation to this boundary integral. 

In order to find a stable Boussinesq model, it is sufficient that the approximate Hamiltonian 
is positive-definite. The difficult part is the kinetic energy. This energy is split in a part 
above and a part below the still-water level. The part above the still-water level is easily 
approximated. By Greens' formula one can obtain a boundary integral of the part below the 
still-water level, containing the product of the velocity potential and its normal derivative. Due 
to the impermeability of the bottom there is only a contribution at the still-water level. The 
normal derivative is expressed in terms of a simple integral operator acting only in tangential 
directions using Taylor series and the impermeability condition at the bottom. Next the two 
parts of the kinetic energy are recombined. The part above the still-water level can be included 
by modifying the integral operator slightly. Moreover, we have altered it such that it becomes 
self-adjoint. The method is optimal in the sense that only once per right-hand side evaluation 
a Helrnholtz-type equation needs to be solved, which is a reduction of a factor two compared 
to the method proposed by Mooiman based on the work of Broer. 

Further we were able, like in Mooiman's method, to choose our approximation such that 
the first three terms in the Taylor series expansions of our dispersion relation for even bottoms 
and that of the exact dispersion relation are equal, which appeared to be advantageous in 
computations. 

In this paper, we gave no numerical results of our model. An implementation has been 
made already in (u, v, () variables, as in Mooiman's model. The method is stable and the 
reduction of computation time with respect to Mooiman's model is more than a factor two, 
as expected. Currently, tests are performed in order to validate the quality of the model. First 
results indicate that the accuracy of our model is at least as good as that of Mooiman's model. 

Appendix 

A. Expressing Ek,o as function of V¢(x, y, 0) 

Here, we present an exact expression for Ek,0 as a function of V,I)(x, y, 0) which may be of 
interest if higher-order approximations have to be derived. In view of (26) we must express 
• z(X, y, 0) as a function of V~(x ,  y, 0). First we consider the Taylor series expansion of 
(I) (x, y, z) 

O(x,y ,z )  
1Ok  

= ~-" k! Oz k~(x 'y 'O)zk  
k=O 

= k~--O 1 1)kAkff2(x,y,O)z2k 

+ (2k + 1), k=O 
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For convenience we introduce the functions 

~ (x ,y )  = ¢ ( x , y , 0 ) ,  ~z(X,Y) = ~z(x ,y ,  0) 

and the linear operators 

1 i 1 ~k 2kAk •,--) z za u F(z),, = E 
k=O 

and 

X~ oo 1 ( l)kz2k+lAkT./' G(z)u 
(2k + 1)! , k=0 

Then the Taylor Series expansion can be written as 

~(x ,  y, z) = F ( z ) ~ ( x ,  y) + C(z)~z(X,  y) 

The operators F and G have the following properties: 

F ( - z )  = F( z )  

G ( - z )  = - G ( z )  
OG 

- F  
Oz 
OF 1 

- G A  
Oz p 

Substituting (35) in the impermeability condition at the bottom 

V ¢ .  V h  + ff2z = 0, z = - # h ( x , y )  

gives 

[ f ( p h ) V ~  - G ( # h ) V ~ z ] V h  - OF OG --ff-~z(ph)q: + ---ff-~z(ph)qoz = 0 

To simplify this equation, we first note that 

~ z  (#h)~o + (F(#h)V~o) . V h  = 1G(#h)Aqo + V h  . ( OG # Oz ( ' h I v e )  

1 
= - d i v ( G ( p h ) V ~ )  

# 

and 

OG 
Oz (~h)~ - ( C ( # h ) V ~ z ) .  Vh  

= ( F ( # h )  - 1)A-1Aqoz q- ~z q- #Vh.  ~z](#h)A-1V~z 

= (1 + div ( F ( - p h )  - 1 ) A - 1 V ) ~ ,  

(35) 

(36) 
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Using these identities in (36), we obtain 

(1 + div ( F ( p h ) -  1)A-1V)qaz = - l d i v ( G ( # h ) V ~ )  
# 

Under mild conditions, there is a B such that qOz = - A B .  Herewith, we readily obtain the 
following equation for B (cf. (30)) 

F(.h)VB = !a(.hlV  

With this result the kinetic energy can be written as 

Ek,o = ~O~z dx dy 

j'j" = V B V ~  dx dy 
OO OO 

= dx 
oO O(0 

Neglecting 0(. 2) terms yields Assertion 2 of Lemma i as expected. 
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